Call for Papers  

Article Details


Research Article

The Role of MIF in Hepatic Function, Oxidative Stress, and Inflammation in Thioacetamide-induced Liver Injury in Mice: Protective Effects of Betaine

[ Vol. 28 , Issue. 16 ]

Author(s):

Dušan Vukićević, Branislav Rovčanin, Kristina Gopčević, Sanja Stanković, Danijela Vučević, Bojan Jorgačević, Dušan Mladenović, Milena Vesković, Janko Samardžić, Rada Ješić and Tatjana Radosavljević*   Pages 3249 - 3268 ( 20 )

Abstract:


Background: Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that contributes to the inflammatory response to chemical liver injury. This cytokine exhibits pro- and anti-inflammatory effects depending on the etiology and stage of liver disease.

Objective: Our study aimed to investigate the role of MIF in oxidative stress and inflammation in the liver, and modulatory effects of betaine on MIF in thioacetamide (TAA)-induced chronic hepatic damage in mice.

Methods: The experiment was performed on wild type and knockout MIF-/- C57BL/6 mice. They were divided into the following groups: control; Bet-group that received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/-+Bet; TAA-group that received TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/-+TAA+Bet. In TAA- and Bet-treated groups, animals received the same doses. After eight weeks of treatment, blood samples were collected for biochemical analysis, and liver specimens were prepared for the assessment of parameters of oxidative stress and inflammation.

Results: In MIF-/-mice, TAA reduced transaminases, γ-glutamyltranspeptidase, bilirubin, malondialdehyde (MDA), oxidative protein products (AOPP), total oxidant status (TOS), C-reactive protein (CRP), IL-6, IFN-γ, and increased thiols and total antioxidant status (TAS). Betaine attenuated the mechanism of MIF and mediated effects in TAA-induced liver injury, reducing transaminases, γ-glutamyltranspeptidase, bilirubin, MDA, AOPP, TOS, CRP, IL-6, IFN-g, and increasing thiols.

Conclusion: MIF is a mediator in hepatotoxic, pro-oxidative, and proinflammatoryeffects of TAA-induced liver injury. MIF-targeted therapy can potentially mitigate oxidative stress and inflammation in the liver, but the exact mechanism of its action requires further investigation. Betaine increases anti-oxidative defense and attenuates hepatotoxic effects of MIF, suggesting that betaine can be used for the prevention and treatment of liver damage.

Keywords:

Thioacetamide, liver damage, inflammation, macrophage migration inhibitory factor, betaine, mice.

Affiliation:

Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, Belgrade, Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11000 Belgrade, Institute of Digestive Diseases, Clinical Centre of Serbia, Belgrade, Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, Belgrade



Read Full-Text article