Call for Papers  

Article Details


Review Article

Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery

[ Vol. 29 , Issue. 14 ]

Author(s):

Martina Veit-Acosta and Walter Filgueira de Azevedo Junior*   Pages 2438 - 2455 ( 18 )

Abstract:


Background: CDK2 participates in the control of eukaryotic cell-cycle progression. Due to the great interest in CDK2 for drug development and the relative easiness in crystallizing this enzyme, we have over 400 structural studies focused on this protein target. This structural data is the basis for the development of computational models to estimate CDK2-ligand binding affinity.

Objective: This work focuses on the recent developments in the application of supervised machine learning modeling to develop scoring functions to predict the binding affinity of CDK2.

Method: We employed the structures available at the protein data bank and the ligand information accessed from the BindingDB, Binding MOAD, and PDBbind to evaluate the predictive performance of machine learning techniques combined with physical modeling used to calculate binding affinity. We compared this hybrid methodology with classical scoring functions available in docking programs.

Results: Our comparative analysis of previously published models indicated that a model created using a combination of a mass-spring system and cross-validated Elastic Net to predict the binding affinity of CDK2-inhibitor complexes outperformed classical scoring functions available in AutoDock4 and AutoDock Vina.

Conclusion: All studies reviewed here suggest that targeted machine learning models are superior to classical scoring functions to calculate binding affinities. Specifically for CDK2, we see that the combination of physical modeling with supervised machine learning techniques exhibits improved predictive performance to calculate the protein-ligand binding affinity. These results find theoretical support in the application of the concept of scoring function space.

Keywords:

chemical space, physical modeling, CDK2, scoring function space, drug design, crystal structure, machine learning

Affiliation:

Western Michigan University, 1903 Western, Michigan Ave, Kalamazoo, MI 49008, Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900



Read Full-Text article