Call for Papers  

Article Details


Review Article

How Do Bismuth-Based Nanomaterials Function as Promising Theranostic Agents for the Tumor Diagnosis and Therapy?

[ Vol. 29 , Issue. 11 ]

Author(s):

Mengkui Ding, Jinyao Liu, Junlei Yang, Hui Wang, Xianjin Xie, Xiaoyu Yang, Yuhao Li, Ning Guo, Ruizhuo Ouyang* and Yuqing Miao   Pages 1866 - 1890 ( 25 )

Abstract:


The complexity of the tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as the high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of the tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. In the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth- based NMs, hoping to provide researchers some inspiration to design safe and effective nanotherapeutic agents for clinical treatments of cancers.

Keywords:

Bismuth-based NMs, photothermal therapy, theranostic agent, cancer diagnosis and treatment, X-ray computed tomography imaging, photoacoustic imaging.

Affiliation:

Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093



Read Full-Text article