João Pedro Thimotheo Batista*, Lucas Alexandre Santos Marzano, Renata Aguiar Menezes Silva, Karla Emília de Sá Rodrigues and Ana Cristina Simões e Silva Pages 1003 - 1028 ( 26 )
Background: Obese individuals have higher rates of cancer incidence and cancer- related mortality. The worse chemotherapy outcomes observed in this subset of patients are multifactorial, including the altered physiology in obesity and its impact on pharmacokinetics, the possible increased risk of underdosing, and treatment-related toxicity.
Aims: The present review aimed to discuss recent data on physiology, providing just an overall perspective and pharmacokinetic alterations in obesity concerning chemotherapy. We also reviewed the controversies of dosing adjustment strategies in adult and pediatric patients, mainly addressing the use of actual total body weight and ideal body weight.
Methods: This narrative review tried to provide the best evidence to support antineoplastic drug dosing strategies in children, adolescents, and adults.
Results: Cardiovascular, hepatic, and renal alterations of obesity can affect the distribution, metabolism, and clearance of drugs. Anticancer drugs have a narrow therapeutic range, and variations in dosing may result in either toxicity or underdosing. Obese patients are underrepresented in clinical trials that focus on determining recommendations for chemotherapy dosing and administration in clinical practice. After considering associated comorbidities, the guidelines recommend that chemotherapy should be dosed according to body surface area (BSA) calculated with actual total body weight, not an estimate or ideal weight, especially when the intention of therapy is the cure.
Conclusion: The actual total body weight dosing appears to be a better approach to dosing anticancer drugs in both adults and children when aiming for curative results, showing no difference in toxicity and no limitation in treatment outcomes compared to adjusted doses.
Obesity, pharmacokinetics, cancer chemotherapy, antineoplastics, dose adjustment, body-surface area, pediatrics, actual total body weight, ideal body weight.