Amanda de Andrade Borges, Gabriel Ouverney, Afonso Thales Sousa Arruda, Amanda Vieira Ribeiro, Ruan Carlos Busquet Ribeiro, Acácio Silva de Souza, Anna Carolina Carvalho da Fonseca, Lucas Nicolau de Queiroz, Elan Cardozo Paes de Almeida, Bruno Pontes, Vitor Won-Held Rabelo, Vitor Ferreira, Paula Alvarez Abreu, Fernando de Carvalho da Silva*, Luana da Silva Magalhães Forezi* and Bruno Kaufmann Robbs* Pages 359 - 379 ( 21 )
Background: Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science.
Objective: This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC).
Methods: Given the significance of both naphthoquinones and coumarins as essential pharmacophores/ privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma.
Results: By several in vitro, in silico, and in vivo approaches, we demonstrated that compound 6e was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound 6e was non-hemolytic and tolerated in vivo at 50 mg/kg with an LD50 of 62.5 mg/kg. Furthermore, compound 6e did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, 6e had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity in vitro.
Conclusion: We assert that compound 6e shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.
Oral squamous cell carcinoma, naphthoquinone, coumarin, pyruvate kinase M2, chemotherapy, oral cancer.