Call for Papers  

Article Details


Review Article

Recent Advancements in the Delivery of Therapeutic Agents Targeting RNA-dependent RNA Polymerase of SARS-CoV-2

Author(s):

Kalpesh Mahajan, Dipika Pawar and Sankha Bhattacharya*   Pages 1 - 21 ( 21 )

Abstract:


This study aimed to undertake a complete evaluation and analysis of all known data on RNA-dependent RNA polymerase (RdRp) inhibitors, concentrating on their safety, efficacy, and current improvements in the delivery of therapeutic drugs targeting RdRp of SARS-CoV-2. The work has attempted to emphasise the necessity for future research into the development of nanocarrier-based targeted drug delivery methods for RdRp inhibitors in the treatment of COVID-19. In December 2019, a novel SARS-- CoV-2 strain was discovered in Wuhan, China. SARS-CoV-2 is transferable among humans and has caused a global pandemic. The rapid global outbreak of SARS-CoV-2 and numerous deaths caused because of coronavirus disease (COVID-19) prompted the World Health Organization to announce a pandemic on March 12, 2020. COVID-19 is becoming a key concern that has a significant impact on an individual’s life status. RdRp inhibitors are major pharmaceutical agents used in the treatment of COVID-19, which have various undesirable side effects, a greater risk of recurrence, lower bioavailability, as well as a lack of targeted therapy. Hence, the present article has provided a review on all known data on RdRp inhibitors, safety, and efficacy, and recent advances in the delivery of therapeutic agents targeting RdRp of SARS-CoV-2. An analysis has been done using a scientific data search engine, such as the National Center for Biotechnology Information (NCBI/PubMed), Science Direct, Google Scholar, WIPO, Lens, etc. The information has emphasized the need for more research into the safety, efficacy, and development of nanocarrier-based targeted drug delivery systems for RdRp inhibitors in the treatment of COVID-19.

Keywords:

SARS-CoV-2, COVID-19, RNA-dependent RNA polymerase, nanocarriers, novel drug delivery system, remdesivir, molnupiravir, favipiravir.

Affiliation:



Read Full-Text article